
Hybrid Languages∗

Patrick Blackburn† and Jerry Seligman‡

Abstract

Hybrid languages have both modal and first-order characteristics: a
Kripke semantics, and explicit variable binding apparatus. This paper
motivates the development of hybrid languages, sketches their history, and
examines the expressive power of three hybrid binders. We show that all
three binders give rise to languages strictly weaker than the corresponding
first-order language, that full first-order expressivity can be gained by
adding the universal modality, and that all three binders can force the
existence of infinite models and have undecidable satisfiability problems.

1 Introduction

Although both first-order languages and modal languages are tools for describing
relational structures, they work very differently. First-order languages take an
‘external’ view of relational structures, and make use of explicit variables and
binding. Modal languages, on the other hand, take an ‘internal’ view and eschew
explicit variable binding in favour of operators. The purpose of this paper is to
introduce and explore a number of hybrid languages. These are like first-order
languages in their explicit use of variables and binding, but adopt the internal
perspective characteristic of modal logic.

Our investigation is largely model theoretic. We begin with an informal
introduction to hybrid languages, indicating how they arise from recent work
in extended modal logic, and sketch what we know about their history. We
then define a number of hybrid languages and turn to the topic that will oc-
cupy us for remainder of the paper: their expressivity. Firstly, we compare
the hybrid languages with each other and with their first-order correspondence
language. As we shall see, three of these languages are strictly weaker than
the correspondence language—though full first-order expressive power can be

∗To appear in Journal of Logic, Language and Information.
†Computerlinguistik, Universität des Saarlandes, Saarbrücken, D-66041, Germany. Email:

patrick@coli.uni-sb.de
‡Institute of Philosophy, National Chung Cheng University, Chia-Yi, Taiwan, R.O.C.

Email: jerry@phil.ccu.edu.tw

1

gained by adding the universal modality. Moreover, they give rise to an expres-
sive hierarchy; we show that the hierarchy is genuine by establishing a number
of preservation results. Secondly, we show that none of these languages has the
finite model property, and all are undecidable. To conclude the paper we note
some potential applications and directions for further logical investigation.

2 Towards hybrid languages

Modal logic has changed dramatically over the last twenty years. A host of
new applications in theoretical computer science, knowledge representation and
computational linguistics has led to the development of richer languages (for
example, PDL, Harel 1984) and the investigation of such topics as computational
complexity and automated theorem proving. Moreover, our understanding of
what modal logic actually is has deepened considerably. For example, thanks
to correspondence theory (see van Benthem 1983, 1984) we know that modal
languages can be usefully viewed as fragments of first- (and indeed, second-)
order logic. Modal languages are no longer seen as exotic ‘non-classical’ systems;
like their classical cousins, they are simply a way of talking about relational
structures. As this correspondence theoretic view—and in particular, the first-
order perspective it offers—underlies much of the present paper, let us briefly
note how it arises.

Suppose we are working with a modal language with a single unary modality
〈R〉. That is, we have a (denumerable) collection Prop of propositional sym-
bols (written p, q, r etc.), a truth-functionally adequate collection of boolean
connectives (e.g. ¬ and ∧) and 〈R〉. We generate the formulae in the expected
way (all elements of Prop are formulae, boolean combinations of formulae are
formulae, 〈R〉ϕ is a formula if ϕ is, and nothing else is a formula) and define
[R]ϕ to be ¬〈R〉¬ϕ.

The standard semantics makes use of Kripke models. For the language in
〈R〉, a Kripke model M consists of a non-empty set |M |, a binary relation
RM on |M |, and a Prop-indexed collection of unary relations on |M |. The
satisfaction definition inductively defines a three-place relation between a model
M , a formula ϕ, and elements a of |M |:

M,a |= p iff a ∈ P, where P is the unary relation indexed by p
M, a |= ¬ϕ iff M,a 6|= ϕ
M, a |= ϕ ∧ ψ iff M,a |= ϕ and M,a |= ψ
M, a |= 〈R〉ϕ iff there is an a′ ∈ |M | such that RM (a, a′) and M,a′ |= ϕ

While this definition is of fundamental importance, thinking of modal logics
purely in terms of Kripke models predisposes one to view modal logic as an iso-
lated formal system. Correspondence theory offers a broader perspective which
emphasizes the connections between modal and classical languages. The basic
ideas are very simple. First, we note that Kripke models are simply relational

2

structures in the usual sense of model theory (see Hodges 1993). Next, we note
that there is an obvious way of viewing the Kripke satisfaction definition as
a translation of modal formulae into first-order formulae. For the modal lan-
guage in 〈R〉, the appropriate ‘correspondence language’ is a first-order language
with a unary relation symbol R and a Prop-indexed collection of unary relation
symbols. The required translation of modal formulae (known as the standard
translation) is as follows:

STx(p) = Px, where P is the relation symbol indexed by p
STx(¬ϕ) = ¬STx(ϕ)
STx(ϕ ∧ ψ) = STx(ϕ) ∧ STx(ψ)
STx(〈R〉ϕ) = ∃y(R(x, y) ∧ STy(ϕ))

For the sake of definiteness, we may take the y in the final clause to be the first
variable different from x in some fixed enumeration of the variables. Note that
for any modal formula ϕ, STx(ϕ) contains exactly one free variable, namely
x. It is clear that for each model M , modal formula ϕ, and element a of |M |,
M,a |= ϕ iff M |= STx(ϕ)[x 7→ a] (here [x 7→ a] means assign a to the free
variable x).

Simple as it is, the standard translation tells us a lot about what makes
modal languages special. As a number of logicians (most notably Prior 1967)
have emphasized, modal languages take an ‘internal’ or ‘local’ view of informa-
tion. To some extent these intuitions are clarified by the Kripke satisfaction
definition (we evaluate formulae at points inside models, and only ever examine
R-accessible worlds) but the standard translation makes them explicit. Modal
languages really do work ‘internally’: to capture their effect classically we must
work not with first-order sentences, but with formulae bearing a special free vari-
able. Moreover, modal formulae work ‘locally’: all occurrences of quantifiers in
the formulae produced by the standard translation are bounded.

But correspondence theory has not only proved mathematically fruitful; it
has changed the way modal logicians ply their trade. The idea that modal
languages are an interesting way of talking about relational structures—coupled
with the increasing emphasis on applicable formalisms—has encouraged modal
logicians to experiment with a wide variety of enriched formalisms. Our work
on hybrid languages has it roots in this emerging field of extended modal logic.
In particular, it draws on recent work on logical modalities and modal logics with
names. Let us consider these in turn.

Logical modalities are rather like first-order ‘logical predicates’. For example,
equality is not definable in arbitrary structures using only first-order apparatus.
However, because equality is such a fundamental relation, it is usual to add
a special binary relation symbol to first-order languages (namely, =) and to
stipulate that it denotes the equality relation. Logical modalities are based on
the same idea: if we need to talk about fundamental but modally undefinable
relations, introduce special modalities and stipulate that they deal with the

3

relation in question. Two such operators have proved particularly useful: the
D-operator (which explores the 6= relation) and the universal modality (which
deals with the universal relation |M | × |M |). Both enrichments result in a
considerable increase in expressive power (Goranko and Passy 1993, de Rijke
1992) and the universal modality plays an important supporting role in what
follows.

However, the immediate ancestors of hybrid languages are modal logics with
names (see Passy and Tinchev 1985, 1991, Gargov and Goranko 1993, Blackburn
1993). The enrichment involved is simple: a second sort of atomic symbol is
introduced (these are called names or nominals) and it is stipulated that such
formulae are satisfied at a unique element of any Kripke model. Intuitively, such
a formula ‘names’ the unique point at which it satisfied. This enrichment also
leads to an increase in expressive power. Moreover, it is the first step on the
path to hybrid languages.

Consider a formula built from nominals, say i→ ¬〈R〉i. Here i names a point
which is fixed in any interpretation, and the formula says that the point named
by i is not related to itself by the relation denoted by R. Under correspondence,
the nominal i is treated as a first-order constant. This is where hybrid languages
come in: they treat nominals as variables open to binding. Taking this step leads
to a certain loss of syntactic innocence (instead of a purely propositional system
we shall have to deal with variables, assignments, and binding) but as long
as we retain the internal Kripke semantics, the resulting systems will retain a
distinctively modal flavour.

So, let us augment the basic modal language with a set X of variables,
to be taken as new syntactic atoms. The interpretation of modal formulae is
relativised to an assignment of values to variables g, with all the usual clauses
and a new base clause for variables x:

M, g, a |= x iff g(x) = a.

How should we quantify these variables, and what can we do with the resulting
systems? The reader may be surprised by the first question: isn’t it obvious
what our quantifier should be? Such a reader probably has the following in
mind: build formulae of the form ∃x.ϕ, and interpret them in models (with the
aid of an assignment of values to variables g) as follows:

M, g, a |= ∃x.ϕ iff there is an assignment g′
x
= g such that M, g′, a |= ϕ.

(By ‘g′
x
= g’ we mean that for each variable y in X, either g′(y) = g(y) or x = y.)

This is certainly the most direct hybrid analog of the first-order existential
quantifier, but not the only one. For a start, why should a hybrid existential
quantifier reset only the assignment? Why not use the following binder Σ, which
resets the point of evaluation as well?

M, g, a |= Σx.ϕ iff there is an a′ in M and an assignment g′
x
= g such that

g′(x) = a′ and M, g′, a′ |= ϕ.

4

Intuitively, Σ binds ϕ’s variables and tries to find a satisfying point somewhere in
the model. It too seems a reasonable candidate for the role of ‘hybrid existential
quantifier’.

But we are under no obligation to define any analog of the existential quan-
tifier. If we reflect on the locality inherent in modal logic, we are led to ideas
that owe little to first-order logic. In particular, the following binder is a natural
choice:

M, g, a |= ↓x.ϕ iff M, g′, a |= ϕ, where g′
x
= g and g′(x) = a.

That is, ↓ binds x to the point of evaluation: it names the here-and-now. This
addition results in a considerable increase in expressive power. For example,
suppose we extend the propositional tense logic with variables and ↓. Then the
Until (and Since) operators become definable:

Until (ϕ,ψ) := ↓x.F (ϕ ∧H(Px→ ψ)).

This is a striking example. The Until operator is not definable in tense logic
enriched with nominals, the universal modality, or even the D-operator.

Finally, we have a binder which occupies a natural position in logical space,
but which we had not considered before beginning this investigation:

M, g, a |= ⇓x.ϕ iff there is an a′ in M and an assignment g′
x
= g such that

g′(x) = a and M, g′, a′ |= ϕ.

The ⇓ operator combines the powers of the ↓ and 3 (‘somewhere’) operators;
indeed, it is easy to see that ⇓x.φ is logically equivalent to ↓x.3φ.

These, then, are the hybrid binders we shall explore. To conclude this
overview, we sketch what is already known about them. Although the literature
is small and scattered, all three binders have been considered previously—albeit
sometimes in disguised form.

Arthur Prior (1967, 1968) seems to have been the first to suggest ∃, and it
was investigated further by Bull (1970). Bull worked in tense logic enriched with
both ∃ and the universal modality, and showed that the Henkin construction
adapted naturally to the hybrid system. The idea then seems to have lain
dormant until (independently) reinvented in the mid ’80s by the Sofia school.
Beginning with PDL with names (Passy and Tinchev 1985a) they swiftly moved
to PDL enriched with ∃ (Passy and Tinchev 1985b, 1991). Technical themes
explored in the Bulgarian tradition include (high) undecidability results, the
natural way the first-order Henkin construction adapts to the hybrid systems,
and Gabbay (1981) style irreflexivity rules.

Although we are not aware of any direct use of Σ, there are at least two
systems in which it is a natural defined operator: Allen’s interval-based system
and Prior’s UT calculus. Allen’s calculus is based around a ‘retrieval’ operator
Holds(i, ϕ), where i names an interval and ϕ is a formula. The intended seman-
tics is that ϕ holds at the interval named by i. Similarly, Prior’s UT calculus is

5

based around the retrieval operator T(t, ϕ). Here t names a point, and ϕ must
be true at its denotation.1

Both systems allow quantification over the ‘naming’ slot, and the quantifier
used is essentially ∃. Thus the expressions ∃iHolds(i, ϕ) and ∃iT(i, ϕ) check
whether ϕ is satisfied anywhere in a model. This is what we would write as
Σx.ϕ.2

Finally, ↓ has been independently invented on at least three occasion. Richards
et al (1989) introduce it as part of their investigation of natural language tem-
poral semantics and temporal databases, Goranko (1994, 1995) introduces it
as a formalisation of ‘now’ and ‘then’, and Sellink (1994) introduces it as part
of a system for reasoning about I/O-automata. All three systems have made
different syntactic choices. For example, neither Richards et al nor Sellink treat
the bindable variables as formulae (though it is straightforward to show that the
Richards et al system is essentially tense logic enriched with ↓), but Goranko’s
formulation is basically the same as ours. He extends standard unimodal and
temporal languages with the universal modality and ↓, provides a number of
complete axiomatisations for these systems, and proves undecidability.

3 Syntax and semantics

In this section we define the syntax and semantics of our hybrid languages,
extend the standard translation to cover them, and fix some notation and ter-
minology.

We shall view hybrid languages as alternative ways of talking about rela-
tional structures of arbitrary signature. For convenience, let us fix at the outset
the class of structures we shall work with. Suppose we are given a set R of
relation symbols and a function ν assigning a natural number to each symbol in
R (its arity). Then we shall work with M, the class of relational structures M
consisting of a set |M | together with a subset RM of |M |ν(R), for each R in R.

We now define various languages for describing such structures. We shall be
interested in each language’s capacity to define properties of individuals, thus
our primary semantic relationship is that of an individual a of a model M being
correctly described by a formula ϕ of the language. We write this as

M,a |= ϕ.

1Such retrieval operators are interesting in their own right, and a natural addition to hybrid
languages, but space limitations mean we cannot discuss them further here. Hybrid languages
with retrieval operators are explored in Seligman (1991, 1994). Similar operators are to be
found in topological logic (see Rescher and Urquhart 1971, and references therein).

2In passing, both Allen’s interval system and Prior’s UT calculus can be viewed as hybrid
systems. When one formalises the intended syntax and semantics of these systems, one is lead
not to a standard first-order system, but to topological logic (Rescher and Urquhart 1971).
Hybrid languages offer an alternative to topological formalisations.

6

Our reference language will be the standard first-order language generated
from a set X of variables and the relation symbols in R. We christen this
language L0, and often refer to it as the correspondence language. For simplicity,
we assume that the only logical symbols in L0 are the boolean connectives ∧
and ¬, and the quantifier ∃. The truth of a formula of L0 in a structure M
of M, relative to an assignment function g:X → |M | is given in the standard
way. However the semantic relation of interest—that of an individual of some
structure being described by a formula—requires us to isolate a special variable
to ‘localise’ L0 descriptions to a particular individual. In effect, the linguistic
unit of interest is a formula ϕ of L0 together with a localising variable x; we
write the combined symbol as ϕ[x]. Thus the semantic relation we wish to
explore is defined for L0 as follows:

M, g, a |= ϕ[x] iff ϕ is true in M relative to the unique assignment function

g′:X → |M |, such that g′(x) = a and g′
x
= g.

None of the other languages will need a special symbol to denote the indi-
vidual described. Instead, the relation |= will be defined directly in the way
familiar from modal logic. We now define these systems.

Syntactically, each of these languages is an extension of the basic modal
language Lm corresponding to L0. Lm is the smallest set of formulae containing
the following: (1) each individual variable x ∈ X, (2) ϕ ∧ ψ, for each ϕ and
ψ in Lm, (3) ¬ϕ, for each ϕ in Lm, (4) the propositional constant >, and (5)
R(ϕ1, . . . , ϕν(R)−1), for each ν(R)−1 long sequence ϕ1, . . . , ϕν(R)−1 of formulae
in Lm. Sometimes we drop this ‘official’ syntax in favour of something more
obviously modal. In particular, when working with binary relation R we shall
often use the notation 〈R〉ϕ instead of R(ϕ).

Now for the semantics. Given a structure M in M, an element a ∈ |M |, an
assignment function g:X → |M |, and a wff ϕ of Lm we define:

M, g, a |= x iff g(x) = a

M, g, a |= ϕ ∧ ψ iff M, g, a |= ϕ and M, g, a |= ψ

M, g, a |= ¬ϕ iff M, g, a 6|= ϕ

M, g, a |= > always

M, g, a |= R(ϕ1, . . . , ϕν(R)−1) iff there is a ν(R)−1 long sequence a1, . . . , aν(R)−1
of elements of M such that RM (a, a1, . . . , aν(R)−1) and M, g, ai |= ϕi for
1 ≤ i ≤ ν(R)− 1.

Two comments should be made. First, note that when are working with a
binary relation R, the clause for the modalities is the familiar one:

M, g, a |= 〈R〉ϕ iff there is an a′ inM such thatRM (a, a′) andM, g, a′ |= ϕ.

7

In short, the satisfaction clause for the modalities is the natural generalisation
to n-place relations.

Second, note that the variables denote individual elements of M , not subsets.
That is, we have none of the familiar propositional variables in our language. It
would be a trivial to add them—but for present purposes, superfluous. In this
paper we wish to focus on the purely first-order apparatus of hybrid languages.
Because all the variables of Lm (and of all of the extensions we shall consider)
denote individuals, these systems are essentially first-order.

When variables are introduced we must be careful to ensure that the stan-
dard translation is stated in such a way as to prevent unintentional coreference
and binding. Bearing this in mind, the translation is straightforward:

STx(y) = (x = y)
STx(R(ϕ1, · · · , ϕn)) = ∃y1, · · · , yn(R(x, y1, · · · , yn)

∧STy1(ϕ1) ∧ · · · ∧ STyn(ϕn)).

Here the variables y1, . . . , yn are the first n variables in some standard enumer-
ation which do not occur in R(x, ϕ1, · · · , ϕn).

Lm is only our base language; we shall build hybrid languages on top of it
by adding various binding operators, and possibly an extra modal operator as
well. A binding operator is a binary operator B which takes a variable x and
a formula ϕ as arguments, resulting in a formula written Bx.ϕ, and with the
consequence that all occurrences of x in ϕ are bound. Let us fix some notation
and terminology for extensions of Lm. LetO and B be two sets of symbols, called
operator symbols and binding symbols respectively. The language L(O,B) is
defined to be the smallest set of formulae containing: (1) each individual variable
x ∈ X, (2) R(ϕ1, . . . , ϕν(R)−1), for each ν(R) − 1 long sequence ϕ1, . . . , ϕn of
formulae in L(O,B), (3) ϕ ∧ ψ, for each ϕ and ψ in L(O,B), (4) ¬ϕ, for each
ϕ in L(O,B), (5) the propositional constant >, (6) Oϕ, for each O in O and
each ϕ in L(O,B), and (7) Bx.ϕ, for each B in B, each x in X, and each ϕ in
L(O,B).

The relationship of ‘being free in’ and ‘being bound in’ between a variable
and a formula is defined in the expected way, and a sentence of L(O,B) is defined
to be a formula (of L(O,B)) in which no variable occurs free. The propositional
constant > is included in the base language to ensure that every language has
sentences.

As a notational convenience, we shall use the operators themselves to name
the language. Thus if O is a modal operator, we abbreviate ‘L({O}, ∅)’ to
‘O’, and if B is a binding operator, we abbreviate ‘L(∅, {B})’ to ‘B’. When
multiple operators are involved, with use ‘+’ to indicate language combination.
Thus if O is a modal operator, and B1 and B2 are both binding operators then
‘O + B1 + B2’ abbreviates ‘L({O}, {B1, B2})’. Note that addition of operator-
languages is commutative, associative and idempotent.

We are ready to introduce the operators and binders and their associated
semantic conditions. This investigation will centre around one logical modal

8

operator 3 (the ‘somewhere’ operator) and four binding operators ∃, ↓, Σ and
⇓, associated with the following semantic conditions:

M, g, a |= 3ϕ iff there is an element a′ of |M | such that M, g, a′ |= ϕ

M, g, a |= ∃x.ϕ iff there is an assignment function g′:X → |M | such that

g′
x
= g and M, g′, a |= ϕ

M, g, a |= ↓x.ϕ iff there is an assignment function g′:X → |M | such that

g′
x
= g and g′(x) = a and M, g′, a |= ϕ

M, g, a |= Σx.ϕ iff there is an element a′ of |M | and an assignment function

g′:X → |M | such that g′
x
= g, g′(x) = a′ and M, g′, a′ |= ϕ

M, g, a |= ⇓x.ϕ iff there is an element a′ of |M | and an assignment function

g′:X → |M | such that g′
x
= g, g′(x) = a and M, g′, a′ |= ϕ

Note that 3ϕ means that ϕ holds somewhere in the structure. We define 2ϕ
to be ¬3¬ϕ; this asserts that ϕ holds everywhere in the structure, so 2 is the
universal modality.

For each structure M in M, each a in |M |, and each formula ϕ of L(O,B),
we define:

M,a |= ϕ iff for each assignment function g:X → |M |, M, g, a |= ϕ.

Finally, we extend the standard translation to the new operator and binders
as follows (remembering that STx(ϕ) is only defined for x not in ϕ):

STx(3ϕ) = ∃zSTz(ϕ) (z = the first variable not in ϕ)
STx(∃y.ϕ) = ∃y.STx(ϕ)
STx(Σy.ϕ) = ∃y.STy(ϕ)
STx(↓y.ϕ) = ∃y.(x = y ∧ STx(ϕ))
STx(⇓y.ϕ) = ∃y.∃z.(x = y ∧ STz(ϕ))

It is clear that this translation is satisfaction preserving, that is, for each
modal formula ϕ and variable x not occurring in ϕ,

M, g, a |= ϕ iff M, g, a |= STx(ϕ)[x]

Moreover, the translation STx(ϕ) is sure to be a first-order formula whose free
variables are those of ϕ together with at most one additional free variable, the
‘localising’ variable x. So, as promised, all our hybrid languages can be regarded
as fragments of the first-order correspondence language. But how expressive are
these various fragments? This is the question to which we now turn.

9

4 Comparing expressivity

For a given signature, we have now defined thirty-one hybrid languages: one
for each combination of operators selected from the above five, excluding the
basic modal language. In this section we shall compare the expressivity of these
languages both with each other, and with the correspondence language.

First we need a suitable basis for comparison. We propose to compare the
properties definable by each language.

Definable subsets A property P = {PM}M∈M is a family of sets, with PM ⊆
|M | for each structure M ∈M. A property P is definable in language L, if there
is a sentence ϕ of L such that, for each M ∈M and each a ∈ PM , M,a |= ϕ iff
a ∈ PM .

This is an appropriate measure of hybrid expressivity. It is intrinsically ‘lo-
cal’, and thus a natural choice for modal languages. Note that it is important
that we restrict our attention to sentences, that is to formulae with no free vari-
ables. As the standard translation of the previous section shows, any sentence
of any our hybrid languages gives rise to a first-order formula with one free
variable, and such first-order formulae indeed define properties. A formula of a
hybrid language having free variables would correspond to a first-order formula
with more than one free variable, and so does not express a property.3

We shall compare our languages in the obvious way. We say that language
L′ is at least as expressive as language L, written L ≤ L′, if every property
definable in L is also definable in L′. The languages L and L′ are expressively
equivalent, written L ∼ L′, if L ≤ L′ and L′ ≤ L. We say that L is less
expressive than L′, written L < L′, if L ≤ L′ and not L′ ≤ L.

Note that addition of operator-languages is monotonic in ≤. That is, if
L1 ≤ L′1 and L2 ≤ L′2 then (L1 +L2) ≤ (L′1 +L′2). From this and idempotence,
it follows that the least upper-bound of two operator-languages L and L′ is their
sum L+ L′ (up to expressive equivalence).

Note also that the existence of a translation of L in L′ ensures that L ≤ L′.
From the standard translation given in the previous section, it follows that the
correspondence language is as least as expressive as any of the hybrid languages.

The 3↓-hierarchy

Consider Figure 1. We shall establish that it is an exact picture of the ≤-
ordering of our languages. The position of those combinations of languages not
depicted in the diagram can be computed by taking least upper-bounds.

Showing that this diagram is an exact picture of the ≤ ordering falls into
two parts. The easy part is to show that if there is an arrow from L to L′

3The question of how best to compare the expressivity of formulae with free variables is
an interesting one, but is not addressed here.

10

⇓

3↓

Σ∃

�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
AK

A
A
A
A
A
A
A
AK

�
�
�
�
�
�
�
��

Figure 1: The 3↓-hierarchy

in the diagram, then L ≤ L′; we do this by defining the operator or binder
characteristic of L using the operator or binder in L′. Showing that the the
diagram is exact—that is, demonstrating that if there is no arrow from L to L′,
then then L 6≤ L′—is harder; we do so using model theoretic arguments.

Proposition 4.1 Each of the thirty-one hybrid languages is expressively equiv-
alent to one of the five basic hybrid languages: ↓, 3, ∃, Σ, or ⇓. Moreover, the
languages are ordered as follows: ↓ ≤ ∃ ≤ ⇓ and 3 ≤ Σ ≤ ⇓

Proof. The order of the five basic languages is established by means of the
following definitions:

↓x.ϕ := ∃x.(x ∧ ϕ)
∃x.ϕ := ⇓z.⇓x.(z ∧ ϕ), where z is a variable not occurring in ϕ
3ϕ := Σz.ϕ, where z is a variable not occurring in ϕ
Σx.ϕ := ⇓z.⇓x.(x ∧ ϕ)

Also, the definition
⇓x.ϕ := ↓x.3ϕ

shows that ⇓ ≤ ↓+3 and so, by monotonicity, that ↓+3 and any other language
containing an operator or binder from each of the two branches of the diagram
is expressively equivalent to ⇓. Again by monotonicity, any language combining
operators from just one branch is expressively equivalent to the basic language
given by the most expressive of those operators. This ensures that all thirty-one
hybrid languages are expressively equivalent to one of the basic five. a

11

Theorem 4.1 The diagram in Figure 1 is an exact picture of the expressivity
ordering of the hybrid languages definable using the operators ↓, 3, ∃, Σ and ⇓.

Proof. That the diagram is a correct picture of the ordering follows from Propo-
sition 4.1. It remains to be shown is that the diagram is an exact picture of the
ordering. For this it suffices to establish that ∃ 6≤ ↓, 3 6≤ ∃, Σ 6≤ 3 and ↓ 6≤ Σ.
These results are established as Propositions 4.3, 4.6, 4.8 and 4.10 of the next
section. a

Preservation Results

A negative expressivity result, say L 6≤ L′, may be proved by showing that the
truth of sentences of L′ are preserved under certain relations between structures
which do not preserve the truth of sentences of L. Two of the relations we
shall use (generated substructure and bisimulation) are standard tools of modal
model theory; the other two (proper generated substructure isomorphism and
full internal bisimulation) are new.

Generated substructures Given a structureM inM, letMa be the smallest
substructure of M , such that a ∈ |Ma| and for each R ∈ R, and each ν(R)-long
sequence a1, . . . , aν(R) of elements of |M |, if a1 ∈ |Ma| and 〈a1, . . . , aν(R)〉 ∈ RM
then a2, . . . , aν(R) ∈ |Ma|. Ma is the substructure of M generated by a.

Proposition 4.2 The truth-value of each formula ϕ of ↓ is preserved by taking
generated substructures; that is for each model M in M and each a ∈ |M |, if
M,a |= ϕ then Ma, a |= ϕ.

Proof. By induction on the complexity of formulae, with the following strength-
ened inductive hypothesis: for each g:X → |Ma| and b ∈ |Ma|, M, g, b |= ϕ
iff Ma, g, a |= ϕ. All the required inductive steps, save that for ↓, are stan-
dard. The step for ↓ is as follows: if g:X → |Ma| and M, g, b |= ↓x.ϕ then

there is a g′:X → |M | with g′
x
= g such that g′(x) = b and M, g′, b |= ϕ.

Clearly, rng (g′) ⊆ |Ma|, so Ma, g
′, b |= ϕ, by the inductive hypothesis, and

so Ma, g, b |= ↓x.ϕ. The converse is proved similarly, and this completes the
induction. Now suppose that M,a |= ϕ. Each assignment g on Ma is also an
assignment on M and so M, g, a |= ϕ. By the above argument, Ma, g, a |= ϕ,
and so Ma, a |= ϕ, as required. a

Proposition 4.3 ∃ 6≤ ↓

Proof. Suppose for the sake of a contradiction that ∃ ≤ ↓. Then for each ∃-
sentence ϕ the property defined by ϕ is also definable in L′, and so there is a
↓-sentence ϕ′ equivalent to ϕ. By Proposition 4.2 the truth-value of ϕ′, and
hence of ϕ, is preserved by taking generated substructures. But this is not

12

the case. Consider the following counterexample. Let M be the two-element
structure, with |M | = {a, b}, and a binary relation RM = {〈a, a〉}.

∃ x.¬〈R〉x f
b

v
a

The ∃-sentence ∃x.¬〈R〉x is true at a in M , for we can assign the point b to
x and 〈a, b〉 6∈ RM . However it is not true at a in Ma. As Ma contains only
the point a, all assignments assign a to x; and as a is reflexive, ¬〈R〉x must be
false. a

Proper Generated Substructure Isomorphisms Given structures M and
M ′ in M, and elements a ∈ |M | and a′ ∈ |M ′|, we say that an isomorphism
f :Ma → M ′a′ is a proper generated substructure isomorphism iff f(a) = a′,
M 6= Ma, and M ′ 6= M ′a′ .

Proposition 4.4 The truth-values of ∃-formulae is preserved under proper gen-
erated substructure isomorphisms. In other words, if M and M ′ are structures
in M such that there is a proper generated substructure isomorphism f from
Ma to M ′a, then for each ∃-formula ϕ, if M,a |= ϕ then M ′, a′ |= ϕ.

Proof. By induction on the complexity of ϕ. Once more we shall need a slightly
stronger statement to serve as an induction hypothesis. Assignments g:X →
M and h:X → M ′ are said to be f -compatible iff for each x ∈ X, if either
g(x) ∈ |Ma| or h(x) ∈ |M ′a′ | then h(x) = fg(x). Our induction hypothesis is
that, for each ∃-formula ϕ, if M,M ′, a, a′, and f are as above, b ∈ |Ma|, and
g:X → M and h:X → M ′ are f -compatible assignments, then M, g, b |= ϕ iff
M ′, h, f(b) |= ϕ.

The only interesting step in the induction is the clause for ∃x.ϕ. The required
argument is as follows. If M, g, b |= ∃x.ϕ then there is a g′:X → M such that

g
x
= g′ and M, g′, b |= ϕ. Define h′:X →M ′ by

h′(y) =

 h(y) if y 6= x
fg′(x) if y = x and g′(x) ∈ |Ma|
a∗ if y = x and g′(x) 6∈ |Ma|

where a∗ is an arbitrarily chosen element of |M ′| − |M ′a′ |. (There must be such
an element, because M ′ 6= M ′a′ .) By construction, h′ and g′ are f -compatible

assignments, and so M ′, h′, f(b) |= ϕ, by the induction hypothesis. As h
x
= h′,

13

M ′, h, f(b) |= ∃x.ϕ. The converse holds by a symmetric argument, using f−1

instead of f .
This establishes the inductive conclusion. The result follows from the further

observation that for each assignment g′ on M ′, the assignment fg′ on M is f -
compatible. Supposing that M,a |= ϕ we have that M,fg′, a |= ϕ, and so
M, g′, a′ |= ϕ by the inductive conclusion, for each assignment g′ on M ′. Hence
M ′, a′ |= ϕ, as required. a

It is worth noting an easy consequences of this result. For any structure M
inM, let M+ be the structure obtained from M by adding a single point which
is not in the extension of any R in R.

Proposition 4.5 For any M in M and a ∈ |M |, either M = Ma or each
∃-formula true at a in M , is also true at a in M+

a .

Proof. The identity function on |Ma| is a proper generated substructure isomor-
phism from M to M+

a , and so the result follows from Proposition 4.4. a

Proposition 4.5 may be paraphrased as saying that although ∃ can ‘see’
whether or not there are points that lie outside the substructure generated by
the point of evaluation it is blind to the information they contain. All the non-
local generated substructures could be be collapsed to a single point and ∃ could
not detect the difference. By contrast, 3 is sensitive to the information in other
generated substructures, and so we are able to establish the following result.

Proposition 4.6 3 6≤ ∃

Proof. If 3 ≤ ∃ then by Proposition 4.5, for any M in M and a ∈ |M |, either
M = Ma or each 3-sentence true at a in M , is also true at a in M+

a . But this
is not the case. For a counterexample, consider the two-element structure M
shown in the proof of Proposition 4.3. If > is a tautology then the sentence
3〈R〉> is true at b in M , but not true at b in M+

b . a

Bisimulations Given structures M and M ′ in M, a non-empty binary rela-
tion Z ⊆ |M |× |M ′| is called a bisimulation between M and M ′ iff the following
conditions are satisfied:

1. if Z(a1, a
′
1) and R(a1, a2, · · · , aν(R)) then there are a′2, · · · , a′ν(R) ∈ |M

′|
such that R(a′1, a

′
2, · · · , a′ν(R)) and Z(ai, a

′
i) for all i (2 ≤ i ≤ ν(R)), and

2. if Z(a1, a
′
1) and R(a′1, a

′
2, · · · , a′ν(R)) then there are a2, · · · , aν(R) ∈ |M |

such that R(a1, a2, · · · , aν(R)) and Z(ai, a
′
i) for all i (2 ≤ i ≤ ν(R)).

In short, a relation between two models is a bisimulation if related points satisfy
the modally natural back-and-forth conditions.

A bisimulation Z between M and M ′ is full if for each a ∈ |M | there is an
a′ ∈ |M ′| such that Z(a, a′) and for each a′ ∈ |M ′| there is an a ∈ |M | such
that Z(a, a′).

14

Proposition 4.7 Let M and M ′ be structures inM. If Z is a full bisimulation
between (M, g) and (M ′, h) and Z(a, a′), then for each 3-sentence ϕ, M, g, a |=
ϕ iff M ′, h, a′ |= ϕ.

Proof. By induction on the structure of ϕ. The proof is standard (see van Ben-
them 1983,1984; bisimulations are called zig-zag relations in these references).
Briefly, the base case holds because ϕ contains no variables and Z trivially pre-
serves >; the back and forth conditions drive through the step for the modalities.
The inductive step for formulae of the form 3ϕ follows from the assumption that
Z is full. a

Proposition 4.8 Σ 6≤ 3

Proof. Σ-sentences are not necessarily preserved under bisimulations. Let M be
a model with a single binary relation R, such that |M | = {a} and R(a, a). Let
M ′ be the model consisting of the natural numbers with R interpreted as their
usual strict order (<). Let Z relate a to every natural number. We can see that
M,a |= Σx.〈R〉x, by assigning a to x. But this sentence is not true at any point
in M ′, because there is no natural number n for which n < n.

The conclusion follows from Proposition 4.7 by the now familiar argument.
a

Internal bisimulations A bisimulation Z between M and M ′ is an internal
bisimulation on M if M = M ′.

Proposition 4.9 Suppose that Z is a full internal bisimulation on M , and
Z(a, a′). For each Σ-sentence ϕ, M,a |= ϕ iff M ′, a′ |= ϕ.

Proof. By induction on the structure of Σ-sentences. If the principal connective
of ϕ is boolean or a modal operator then the proof follows familiar steps of
Proposition 4.7. The only case of interest is where ϕ = Σx.ψ. In this case we
cannot use the induction hypothesis because x may occur free in ψ and so ψ may
not be a Σ-sentence. However, the conclusion is immediate from the semantics
of Σ, because whether or not M,a |= Σx.ψ does not depend on a. a

Proposition 4.10 ↓ 6≤ Σ

Proof. Given Proposition 4.9, it suffices to show that ↓-sentences need not be
preserved under full internal bisimulations. Let M be a structure with |M | =
{a, b} bearing a single binary relation R = {〈a, a〉, 〈b, a〉}. The relation Z =
{〈a, a〉, 〈a, b〉, 〈b, a〉} is a full internal bisimulation on M . Although M, b |=
↓x.¬〈R〉x and Z(b, a) is bisimilar to a, we have that M,a 6|= ↓x.¬〈R〉x. a

With this result established we have completed the proof of Theorem 4.1:
Figure 1 is indeed an exact picture of our expressive hierarchy.

15

Capturing the correspondence language

We know that all our hybrid languages can be regarded as fragments of the
correspondence language. Here we establish a converse result: the language ⇓
at the top of our hierarchy is strong enough to define all properties that are
definable in the correspondence language L0 using a formula whose only free
variable is the special ‘localising’ variable. We show this by defining the hybrid
translation of a suitable fragment of L0.

We first present the translation for signatures containing only unary relation
symbols P , and binary relation symbols R. Suppose we are working with such
a signature. Choose x to be the ‘localising’ variable and let Lx0 be the set of L0

formulae in which x occurs only free. For the atomic formulae of we define:

HT (v1 = v2) = ⇓x.(v1 ∧ v2)
HT (P (v1)) = ⇓x.(v1 ∧ P)
HT (R(v1, v2)) = ⇓x.(v1 ∧ 〈R〉v2)

Note that these definitions ensure that in the special cases in which the first
variable v1 is the localising variable x, the translation produces formulae which
are logically equivalent to much simpler formulae. For example, HT (x = x) is
a logical truth, HT (x = y) is equivalent to y, and HT (P (x)) is equivalent to P .

The definition of HT is extended to complex formulae of L0 in a straightfor-
ward way. The translation of a boolean combination of formulae is the boolean
combination of the translation of the formulae, and (making use of the fact that
⇓ can define the hybrid binder ∃) the existential quantifier commutes similarly:

HT (∃y.ϕ) = ∃y.HT (ϕ).

For the general case, if ν(R) > 2 then

HT (R(v1, . . . , vn)) = ⇓x.(v1 ∧ 〈R〉(v2, . . . , vν(R)))

Clearly M, g, a |= ϕ iff M, g, a |= HT (ϕ); and if ϕ contains only x free, then
HT (ϕ) is a sentence of ⇓. Thus we have proved

Proposition 4.11 ⇓ ∼ L0.

5 Infinite models and undecidability

In this section we show that any language at least as expressive as ↓ both lacks
the finite model property and has an undecidable satisfiability problem. We
then turn to the other branch of our hierarchy and show that under a more
course-grained measure of expressivity Σ is as strong as the correspondence
language; the undecidability of Σ-satisfiability is an immediate corollary.

The finite model property does not hold even for sentences of ↓. Define:

16

S x ∧ ¬〈R〉x ∧ 〈R〉¬x ∧ [R]〈R〉x

C [R][R]↓y.(¬x→ 〈R〉(x ∧ 〈R〉y))

I [R]↓y.¬〈R〉y

D [R]〈R〉¬x

4 [R]↓y.〈R〉(x ∧ [R](〈R〉(¬x ∧ 〈R〉y → 〈R〉y)))

Let SCID4 be S ∧ C ∧ I ∧D ∧ 4. Note that ↓x.SCID4 is a sentence. This
sentence is satisfied in the following model. Let (N, <) be the natural numbers
in their usual order, and suppose s 6∈ N. Let M be the model bearing a
single binary relation R that is defined as follows: |M | is N ∪ {s}, and R is
< ∪{(n, s), (s, n) : n ∈ N}. Let g be any assignment in |M | such that g(x) = s.
It is clear that M, g, s |= SCID4, hence M, s |= ↓x.SCID4. Thus ↓x.SCID4 has
at least one (infinite) model.

Proposition 5.1 If M, s |= ↓x.SCID4 then |M | is infinite.

Proof. Suppose M, s |= ↓x.SCID4. Let B = {b ∈ |M | : sRb}. Because S is
satisfied, s 6∈ B, B 6= ∅, and for all b ∈ B, bRs. Because C is satisfied, if a 6= s
and a is an R-successor of an element of B then a is also an element of B. As I
is satisfied at s, every point in B is irreflexive; as D is satisfied at s, every point
in B has an R-successor distinct from s; and as 4 is satisfied, R transitively
orders B. Hence B is an unbounded strict partial order, thus B is infinite and
so is |M |. a

Note the way that s played the role of a ‘spy’ point from which a large chunk
of the model could be surveyed. The ability of ↓ to force the existence of models
containing spy points is the key to the following undecidability proof. We prove
undecidability by reducing the unbounded tiling problem to the ↓-satisfiability
problem. A tile t is a 1 × 1 square, of fixed orientation, with coloured edges
right(t), left(t), up(t), and down(t) taken from some denumerable set. The
unbounded tiling problem is: given a finite set T of tile types, does there exist
a function tile from N×N to T such that right(tile(n,m)) = left(tile(n+1,m)),
and up(tile(n,m)) = down(tile(n,m + 1))? This problem is known to be Π0

1

complete; for further information see Harel (1983).
The undecidability proof is model theoretic. We shall represent tiled N×N

‘grids’ as models bearing four binary relations: S, U , R and T . The relations U
and R (up and right) will represent the grid N×N, the T relation the associated
tiles. The role of the S relation is to permit all this information to be surveyed:
there will be a special spy point s from where the entire decorated grid can be
seen via S. This will make it possible to define, for any finite set of tile types
T , a formula ϕT with the following property: T tiles N×N iff ϕT has a model.

17

The undecidability of ↓-satisfiability then follows from the undecidability of the
unbounded tiling problem.

So, let T = {T1, . . . , Tk} be a finite set of tile types. Define:

S1 x ∧ ¬〈S〉x ∧ 〈S〉¬x ∧ [S]〈S〉x ∧ [S][S]x

S2 [S][U]¬x ∧ [S][R]¬x

D [S]〈U〉> ∧ [S]〈R〉>

C† [S][†]↓y.〈S〉〈S〉y, for † ∈ {U,R}

P† [S]↓y.〈†〉↓z.〈S〉〈S〉(y ∧ [†]z), for † ∈ {U,R}

G [S]↓y.〈U〉〈R〉↓z.〈S〉〈S〉(y ∧ 〈R〉〈U〉z)

Ti 〈T 〉 · · · i-times · · · 〈T 〉[T] ⊥

O [S]((
∨k
i=1 Ti) ∧

∧
1≤i<j≤k(Ti → ¬Tj))

V [S](
∨
u(ti)=d(tj)

(Ti ∧ 〈U〉Tj))

H [S](
∨
r(ti)=l(tj)

(Ti ∧ 〈R〉Tj))

Let ϕT be ↓x.(S1 ∧ S2 ∧D ∧ C† ∧ P† ∧G ∧O ∧V ∧H).

Proposition 5.2 T tiles N×N iff ϕT is satisfiable.

Proof. Suppose that M, s |= ϕT . Let G, the set of grid points, be {g ∈ |M | :
sSg}. Because S1 is satisfied, s 6∈ G, G 6= ∅, for all g ∈ G, gRs, and for all
g ∈ G, if gRa then a = s. Note that from these properties it follows that [S]φ
holds at s iff φ is true at all points g ∈ G. Moreover, we also have a (dual of the)
universal modality on G itself: for any formula φ, the formula 〈S〉〈S〉φ is true
at a point g ∈ G iff there is some point g′ ∈ G satisfying φ — in short, every
point in G can see every other point in G by making a two step S-excursion.

Bearing these remarks in mind, it is easy to establish the following. Because
S2 is satisfied at s, s is not accessible from G via the relations U or R. Because
D is satisfied, every point in G has at least one U and R successor, while the
C† ensure that all these successors are in G. The P † guarantee that both U
and R are partial functions on G (and hence, because of D, total functions on
G), while G gives us the desired grid pattern. Note that all these formulas are
prefixed by [S], while five of them (the C†, the P†, and G) also make crucial use
of the 〈S〉〈S〉 combination.

Let g0 be an arbitrary element of G. Let f : N ×N −→ |M | be such that
f(0, 0) = g0, f(n,m)V f(n,m+ 1) and f(n,m)Hf(n+ 1,m). Clearly this func-
tion is well-defined, thus we can now define the tiling. Let tile : N×N→ T be

18

defined by t(〈n,m〉) = ti iff M, g, f(n,m) |= Ti. Using the fact that O, V and
H are satisfied it easily follows that this is a tiling of N×N.

For the converse, suppose that tile : N×N→ T is a tiling of N×N. We build
the model M for ϕT out of the ordered pairs 〈n,m〉 together with the following
ingredients. First, choose some s 6∈ N × N; this will be our spy point. In
addition, for each 〈n,m〉 choose a set TLn,m of cardinality i, where tile (〈n,m〉)
is the i-th tile type. (We choose the TLn,m so that they are mutually disjoint,
and do not contain s or any ordered pair 〈n,m〉 of natural numbers.) Arbitrarily
enumerate the elements of each TLn,m as {l1 . . . , li}. Let Rn,m be the binary
relation on TLn,m given by ljRlk iff k = j + 1. This i-length T -sequence will
be used to represent the fact that the tiling associates a tile of the i-th tile type
with (n,m). We define the desired model M as follows:

|M | = {s} ∪ {〈n,m〉 : n,m ∈ N} ∪
⋃
n,m∈N TLn,m

S = {〈s, 〈n,m〉〉, 〈〈n,m〉, s〉 : n,m ∈ N}

U = {〈〈n,m〉, 〈n,m+ 1〉〉 : n,m ∈ N}

R = {〈〈n,m〉, 〈n+ 1,m〉〉 : n,m ∈ N}

T =
⋃
n,m∈NRn,m ∪ {〈〈n,m〉, l1〉 : n,m ∈ N, l1 ∈ TLn,m}

By construction, M, s |= ϕT . a

Theorem 5.1 ↓ has an undecidable satisfiability problem.

Proof. Immediate from the previous proposition, and the undecidability of the
unbounded tiling problem. a

It is interesting to compare this proof with that of Goranko (1994, 1995).
Goranko also reduces the unbounded tiling problem to the satisfiability problem
for a hybrid language containing ↓. However, his proof makes use of a primitive
universal modality to create the grid. The spy point method shows that ↓ can
be dangerous even in its absence.

Let us turn to the other branch of the hierarchy. The relevant results for 3

are well known (it is an S5 modality, and so has the finite model property and
is decidable in NP time) so let’s consider Σ.

It is more or less immediate that Σ lacks the finite model property. Consider
the binder Π dual to Σ (that is, Πx.ϕ := ¬Σx.¬ϕ). Clearly M, g, a |= Πx.ϕ iff

for all points a′ and all assignments g′
x
= g, if g′(x) = a′ then M, g′, a′ |= ϕ,

thus we can enforce global conditions. Now consider the following formula:

Πx.(〈R〉〈R〉x→ 〈R〉x) ∧Πx.(x→ ¬〈R〉x) ∧Πx.(x→ 〈R〉¬x).

All the satisfying models for this sentence are infinite strict partial orders.

19

The power of Σ to enforce global conditions is the key to the undecidability
result. Although the preservation results of the previous section show that Σ
is not locally as strong as the correspondence language, it is as strong globally.
Consider the following translation of Lx0 into Σ. (We omit the obvious clauses
for the boolean connectives.)

GT (R(y1, . . . , yn) = 3(y ∧R(y2, . . . , yn))
GT (∃y.ϕ) = Σy.GT (ϕ)

Proposition 5.3 For all models M , and all sentences ϕ in Lx0 , M |= ϕ iff for
all points a in M, M,a |= GT (ϕ).

Proof. A straightforward induction on the structure of ϕ. a

Corollary 5.1 Σ has an undecidable satisfiability problem.

6 Concluding remarks

To conclude this paper we suggest some applications for hybrid languages and
note a number of directions for further logical work.

Questions in theoretical computer science have twice lead to the invention
of hybrid languages, namely PDL+∃ (Passy and Tinchev 1985b) and Sellink’s
(1994) ↓-based system for reasoning about automata; it will be interesting to
see how this line of work develops. The other traditional source of hybrid lan-
guages has been the study of knowledge representation; here there are several
potentially interesting applications. For example, hybrid languages are a natu-
ral way of thinking about the temporal representation systems of Allen (1984)
and McDermott (1982). This application has connections with a line of work
which uses hybrid languages to model natural language temporal semantics; see
Richards et al (1989), Blackburn (1994) and Goranko (1994, 1995). Moreover,
recent work (see Buvač, Buvač and Mason 1994,1995) uses what are essentially
three valued hybrid languages for contextual reasoning in AI.

Novel application may arise in computational linguistics, where it is becom-
ing increasingly important to have precise models of syntactic and phonological
structure, together with suitable constraint language. As the models used in
syntax and phonology tend to be labeled, decorated graphs of some sort, it is
usually straightforward to view them as relational structures, and hybrid lan-
guages may be appropriate constraint languages: Reape (1993) has formalised
parts of HPSG (Pollard and Sag 1987) using a feature logic enriched with ∃,
and it would be interesting to experiment with hybrid versions of the Bird and
Blackburn (1991) account of autosegmental phonology.

On the logical front there remains much to do. While the Sofia school has
produced numerous completeness results for ∃ and ↓ in the presence of 3 (see
Passy and Tinchev 1985b, 1991, and Goranko 1994, 1995) there seem to be

20

few 3-free results. It is likely that modal completeness technology will extend
relatively straightforwardly to such systems, but interesting issues remain (for
example, how are Gabbay style irreflexivity rules best handled in weaker sys-
tems?). The new binders also raise proof theoretic issues. Seligman (1994)
proves a cut-elimination result for a hybrid language, but which combinations
of binders (and retrieval operators) admit such well behaved sequent calculi?
Moreover, the present paper has ignored both second order modal definability
and algebraic semantics, two glaring omissions. Finally, it would be pleasant to
make contact with other ‘non-standard’ logics. The topological logic of Rescher
and Urquhart (1971) has already been noted. In addition, there are interesting
points of contact with the work of van Benthem and Alechina (1994), Alechina
and Lambalgen (1994) and Alechina (1994) and these deserve further attention.

Acknowledgements

We would like to thank Valentin Goranko for a number of stimulating discus-
sions, and his comments on an earlier draft of the paper. We would also like
to thank the referee for a number of suggestions which greatly improved the
presentation.

References

[1] Alechina, N., 1994, “On one decidable generalised quantifier logic corre-
sponding to a decidable fragment of first-order logic”, Journal of Logic, Lan-
guage and Information, this issue.

[2] Alechina, N. and Lambalgen, M., 1994, “Correspondence and completeness
for generalised quantifiers”, ILLC Technical Note X-94-03, University of Am-
sterdam.

[3] Allen, J., “Towards a general theory of action and time”, Artificial Intelli-
gence 23, 123–154.

[4] Bird, S., and Blackburn, P., 1991, “A logical approach to arabic phonology”,
pp. 89–94 in Proceedings of the Fifth Conference of the European Chapter of
the Association of Computational Linguistics, Berlin.

[5] Blackburn, P., 1993, “Nominal tense logic”, Notre Dame Journal of Formal
Logic 14, 56–83.

[6] Blackburn, P., 1994, “Tense, temporal reference, and tense logic”, Journal
of Semantics 11, 83–101.

[7] Bull, R., 1970, “An approach to tense logic”, Theoria 36, 282–300.

21

[8] Buvač, S., Buvač, V. and Mason, I., 1994, “The semantics of propositional
contexts”, pp. 468–477 in Proceedings of the Eighth International Symposium
on Methodologies for Intelligent System, Lecture Notes for Artificial Intelli-
gence, Springer Verlag: Berlin.

[9] Buvač, S., Buvač, V. and Mason, I., 1995, “Metamathematics of contexts”,
Fundamenta Informaticae, 23, 263–301.

[10] Gabbay, D., “An irreflexivity lemma”, pp. 67–89 in Aspects of Philosophical
Logic, U. Mönnich, ed., Dordrecht: Reidel.

[11] Gargov, G and Goranko, V., 1993, “Modal logic with names”, Journal of
Philosophical Logic 22, 607–636.

[12] Goranko, V., 1994, “Temporal logic with reference pointers”, pp. 133–164 in
Temporal Logic. First International Conference, ICTL ‘94 Bonn, Germany,
D. Gabbay and H. Ohlbach, ed., Berlin: Springer-Verlag.

[13] Goranko, V., 1995, “Hierarchies of modal and temporal logics with refer-
ence pointers”, to appear in Journal of Logic, Language, and Information.

[14] Goranko, V., and Passy, S., 1989, “Using the universal modality: gains and
questions”, Journal of Logic and Computation 2, 5–30.

[15] Harel, D., 1983, “Recurring dominoes: making the highly undecidable
highly understandable”, in Springer Lecture Notes in Computer Science 158,
177–194.

[16] Harel, D., 1984, “Dynamic logic”, pp. 497–604 in Handbook of Philosophical
Logic, 2, D. Gabbay and F. Guenthner, ed., Dordrecht: Reidel.

[17] Hodges, W., 1993, Model Theory, Cambridge University Press.

[18] Mcdermott, D., 1982, “A temporal logic for reasoning about processes and
plans”, Cognitive Science 6, 101–55.

[19] Passy, S. and Tinchev, T., 1985a, “PDL with data constants”, Information
Processing Letters 20, 35–41.

[20] Passy, S.,and Tinchev, T., 1985b, “Quantifiers in combinatory PDL: com-
pleteness, definability, incompleteness”, in in Springer Lecture Notes in Com-
puter Science 199, 512–519.

[21] Passy, S., and Tinchev, T., 1991, “An essay in combinatory dynamic logic”,
Information and Computation, 93, 263 – 332.

[22] Pollard, C., and Sag, I., 1987, Information Based Syntax and Semantics,
Volume 1: Fundamentals, Stanford: CSLI.

22

[23] Prior, A., 1967, Past, Present and Future, Oxford University Press.

[24] Prior, A., 1968, “ ‘Now’ ”, Nous 2, 101–119.

[25] Reape, M., 1994, “A feature value logic with intensionality, nonwellfounded-
ness and functional and relational dependencies”, pp. 77–110 in Constraints,
Language, and Computation, C.J. Rupp, M. Rosner, and R. Johnson, ed.,
London: Academic Press.

[26] Rescher, N., and Urquhart, A., 1971, Temporal Logic, New York: Springer-
Verlag.

[27] de Rijke, M. (1992a), The modal logic of inequality, Journ. Symbolic Logic
57, 566–584.

[28] Richards, B., Bethke, I., van der Does, J., and Oberlander, J., 1989, Tem-
poral Representation and Inference, London: Academic Press.

[29] Seligman, J., 1991, “A Cut-free Sequent Calculus for Elementary Situated
Reasoning”, Technical Report HCRC-RP 22, HCRC, Edinburgh.

[30] Seligman, J., 1994, “The Logic of Correct Description”, to appear in Ad-
vances in Intensional Logic, M. de Rijke, ed., Dordrecht: Kluwer.

[31] Sellink, M. P. A., 1994, “Verifying modal formulae over I/O-automata by
means of type theory”, Logic Group Preprint Series, Utrecht University.

[32] van Benthem, J., 1983, Modal Logic and Classical Logic, Napoli: Bibliopo-
lis.

[33] van Benthem, J., 1984., “Correspondence Theory”, pp. 167–247 in Hand-
book of Philosophical Logic 2, D. Gabbay and F. Guenthner, eds., Dordrecht:
Reidel.

[34] van Benthem, J., and Alechina, N., 1994, “Modal quantification over struc-
tured domains”, to appear in Advances in Intensional Logic, M. de Rijke, ed.,
Dordrecht: Kluwer.

23

